References
- 1.
Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).
- 2.
Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C. & Vandenbergh, M. P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl Acad. Sci. USA 106, 18452–18456 (2009).
- 3.
A Systemic Approach to the Energy Transition in Europe (SAPEA, 2021); https://www.sapea.info/topics/energy-transition/
- 4.
Global Energy Sector CO2 Emissions Reductions by Current Technology Maturity Category in the Sustainable Development Scenrio relative to the Stated Policies Scenario, 2019–2070, https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-reductions-by-current-technology-maturity-category-in-the-sustainable-development-scenario-relative-to-the-stated-policies-scenario-2019-2070 (International Energy Agency, 2020).
- 5.
Sachs, J. D., Schmidt-Traub, G. & Williams, J. Pathways to zero emissions. Nat. Geosci. 9, 799–801 (2016).
- 6.
Nelson, S. & Allwood, J. M. Technology or behaviour? Balanced disruption in the race to net zero emissions. Energy Res. Soc. Sci. 78, 102124 (2021).
- 7.
Stephenson, J. et al. Energy cultures and national decarbonisation pathways. Renew. Sustain. Energy Rev. 137 137, 110592 (2021).
- 8.
IPCC. Special Report on Global Warming of 1.5 °C. (eds Masson-Delmotteeds, V. et al.) (WMO, 2018).
- 9.
Newell, P. et al. Cambridge sustainability commission report on scaling behaviour change. Rapid Transition Alliance (13 April 2021).
- 10.
Moberg, K. R. et al. Barriers, emotions and motivational levers for lifestyle transformation in Norwegian household decarbonization pathways. Clim. Change 165, 3 (2021).
- 11.
Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).
- 12.
Whitmarsh, L., Capstick, S., Moore, I., Kohler, J. & Le Quere, C. Use of aviation by climate change researchers: structural influences, personal attitudes, and information provision. Glob. Environ. Change 65, 102184 (2020).
- 13.
Dubois, G. et al. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci. 52, 144–158 (2019).
- 14.
Lute, M. L., Attari, S. Z. & Sherman, S. J. Don’t rush to flush. J. Environ. Psychol. 43, 105–111 (2015).
- 15.
Prior, R. An Ohio city has voted to grant Lake Erie the same rights as a person. CNN News, https://edition.cnn.com/2019/02/21/us/ohio-city-lake-erie-rights-trnd/index.html (27 February 2019).
- 16.
Lewis A. et al. 1.5-Degree Lifestyles: Towards A Fair Consumption Space for All (Hot or Cool Institute, 2021).
- 17.
Klinsky, S. & Winkler, H. Building equity in: strategies for integrating equity into modelling for a 1.5 °C world. Philos. Trans. A Math Phys. Eng. Sci. 376, 20160461 (2018).
- 18.
Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).
- 19.
Lamb, W. F. et al. What are the social outcomes of climate policies? A systematic map and review of the ex-post literature. Environ. Res. Lett. 15, 113006 (2020).
- 20.
Kartha, S., Caney, S., Dubash, N. K. & Muttitt, G. Whose carbon is burnable? Equity considerations in the allocation of a ‘right to extract. Clim. Change 150, 117–129 (2018b).
- 21.
Rendall, M. Discounting, climate change, and the ecological fallacy. Ethics 129, 441–463 (2019).
- 22.
IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
- 23.
Creutzig, F. et al. Reviewing the scope and thematic focus of 100,000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation. Environ. Res. Lett. 16, 033001 (2021).
- 24.
Carley, S., Evans, T. P. & Konisky, D. M. Adaptation, culture, and the energy transition in American coal country. Energy Res. Soc. Sci. 37, 133–139 (2018).
- 25.
Asmal, K. Introduction: World Commission on dams report, dams and development. Am. Univ. Int. Law Rev. 16, 1411–1433 (2001).
- 26.
Kawaguchi, D. & Yukutake, N. Estimating the residential land damage of the Fukushima nuclear accident. J. Urban Econ. 99, 148–160 (2017).
- 27.
Sovacool, B. K., Perea, M. A. M., Matamoros, A. V. & Enevoldsen, P. Valuing the externalities of wind energy: assessing the environmental profit and loss of wind turbines in Northern Europe. Wind Energy 19, 1623–1647 (2016).
- 28.
Fairhead, J., Leach, M. & Scoones, I. Green grabbing: a new appropriation of nature? J. Peasant Stud. 39, 237–261 (2012).
- 29.
Druckman, A., Chitnis, M., Sorrell, S. & Jackson, T. Missing carbon reductions? Exploring rebound and backfire effects in UK households. Energy Policy 39, 3572–3581 (2011).
- 30.
Sovacool, B. K. & Griffiths, S. Culture and low-carbon energy transitions. Nat. Sustain. 3, 685–693 (2020).
- 31.
Frankowska, A., Jeswani, H. K. & Azapagic, A. Environmental impacts of vegetables consumption in the UK. Sci. Total Environ. 682, 80–105 (2019).
- 32.
Herforth, A. et al. Cost and Affordability of Healthy Diets across and within Countries: Background Paper for The State of Food Security and Nutrition in the World 2020. FAO Agricultural Development Economics Technical Study No. 9) (FAO, 2020).
- 33.
Axsen, J. & Sovacool, B. K. The roles of users in electric, shared, and automated mobility transitions. Transp. Res. Part D Trans. Environ. 71, 1–21 (2019).
- 34.
Access to Clean Cooking https://www.iea.org/reports/sdg7-data-and-projections/access-to-clean-cooking (International Energy Agency, accessed 2 August 2 2021).
- 35.
Brown, M. A. & B. K. Sovacool. Climate Change and Global Energy Security: Technology and Policy Options (MIT Press, 2011)
- 36.
Bailis, R. et al. Arresting the killer in the kitchen: the promises and pitfalls of commercializing improved cookstoves. World Develop. 37, 1694–1705 (2009).
- 37.
Bailis, R., Drigo, R., Ghilardi, A. & Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5, 266–272 (2015).
- 38.
Smith, K. R. et al. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu. Rev. Public Health 35, 185–206 (2014).
- 39.
Das, K., Pradhan, G. & Nonhebel, S. Human energy and time spent by women using cooking energy systems: a case study of Nepal. Energy 182, 493–501 (2019).
- 40.
Sovacool, B. K. et al. The energy–enterprise–gender nexus: lessons from the Multifunctional Platform (MFP) in Mali. Renew. Energy 50, 115–125 (2013).
- 41.
Osunmuyiwa, O. & Ahlborg, H. Inclusiveness by design? Reviewing sustainable electricity access and entrepreneurship from a gender perspective. Energy Res. Soc. Sci. 53, 145–158 (2019).
- 42.
Johnson, O. W., Gerber, V. & Muhoza, C. Gender, culture and energy transitions in rural Africa. Energy Res. Soc. Sci. 49, 169–179 (2019).
- 43.
Bhattarai, D., Somanathan, E. & Nepal, M. Are renewable energy subsidies in Nepal reaching the poor? Energy Sustain. Develop. 43, 114–122 (2018).
- 44.
Jan, I. & Das Lohano, H. Uptake of energy efficient cookstoves in Pakistan. Renew. Sustain. Energy Rev. 137, 110466 (2021).
- 45.
Khanwilkar, S., Gould, C. F., DeFries, R., Habib, B. & Urpelainen, J. Firewood, forests, and fringe populations: exploring the inequitable socioeconomic dimensions of liquified petroleum gas (LPG) adoption in India. Energy Res. Soc. Sci. 75, 102012 (2021).
- 46.
Patnaik, S. & Jha, S. Caste, class and gender in determining access to energy: a critical review of LPG adoption in India. Energy Res. Soc. Sci. 67, 101530 (2020).
- 47.
Khandelwal, M. et al. Why have improved cook-stove initiatives in India failed? World Dev. 92, 13–27 (2017).
- 48.
Otte, P. P. A (new) cultural turn toward solar cooking—evidence from six case studies across India and Burkina Faso. Energy Res. Soc. Sci. 2, 49–58 (2014).
- 49.
Oluwakemi, A., Jewitt, S. & Clifford, M. Culture, tradition, and taboo: understanding the social shaping of fuel choices and cooking practices in Nigeria. Energy Res. Soc. Sci. 40, 14–22 (2018).
- 50.
Coyfe, R. Solar cooker dissemination and cultural variables. Solar Cookers International Network http://solarcooking.org/advocacy/ dissemination_and_culture.htm (2006).
- 51.
Smith, K. R., Gu, S., Kun, H. & Daxiong, Q. One hundred million improved cookstoves in China: how was it done? World Dev. 21, 941–961 (1993).
- 52.
Kishore, V. V. N. & Ramana, P. V. Improved cookstoves in rural India: how improved are they? A critique of the perceived benefits from the National Programme on Improved Chulhas (NPIC). Energy 27, 47–63 (2002).
- 53.
Adler, M. W., Peer, S. & Sinozic, T. Autonomous, connected, electric shared vehicles (ACES) and public finance: an explorative analysis. Transp. Res. Interdiscip. Perspect. 2, 100038 (2019).
- 54.
Graham-Rowe, E. et al. Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: a qualitative analysis of responses and evaluations. Transp. Res. Part A Policy Pract. 46, 140–153 (2012).
- 55.
Seebauer, S. The psychology of rebound effects: explaining energy efficiency rebound behaviours with electric vehicles and building insulation in Austria. Energy Res. Soc. Sci. 46, 311–320 (2018).
- 56.
Sovacool, B. K., Hook, A., Martiskainen, M. & Baker, L. The whole systems energy injustice of four European low-carbon transitions. Glob. Environ. Change 58, 101958 (2019).
- 57.
Langbroek, J. H. M., Franklin, J. P. & Susilo, Y. O. How would you change your travel patterns if you used an electric vehicle? A stated adaptation approach. Travel Behav. Soc. 13, 144–154 (2018).
- 58.
Hamamoto, M. An empirical study on the behavior of hybrid-electric vehicle purchasers. Energy Policy 125, 286–292 (2019).
- 59.
Kester, J. et al. Novel or normal? Electric vehicles and the dialectic transition of Nordic automobility. Energy Res. Soc. Sci. 69, 101642 (2020).
- 60.
Sovacool, B. K. et al. Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions. Clim. Change 155, 581–619 (2019).
- 61.
Henderson, J. M. EVs are not the answer: a mobility justice critique of electric vehicle transitions. Ann. Am. Assoc. Geogr. 110, 1993–2010 (2020).
- 62.
Sovacool, B. K., Kester, J., Noel, L. & de Rubens, G. Z. Energy injustice and Nordic electric mobility: inequality, elitism, and externalities in the electrification of vehicle-to-grid (V2G) transport. Ecol. Econ. 157, 205–217 (2019).
- 63.
Borenstein, S. & Davis, L. W. The distributional effects of U. S. clean energy tax credits. Tax. Policy Econ. 30, 191–234 (2016).
- 64.
Sovacool, B. K., Kester, J., Noel, L. & de Rubens, G. Z. The demographics of decarbonizing transport: the influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Change 52, 86–100 (2018).
- 65.
Sovacool, B. K. The precarious political economy of cobalt: balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. Extr. Ind. Soc. 6, 915–939 (2019).
- 66.
Hornborg, A. & Martinez-Alier, J. Ecologically unequal exchange and ecological debt. J. Polit. Ecol. 23, 328–333 (2016).
- 67.
Skeete, J.-P., Wells, P., Dong, X., Heidrich, O. & Harper, G. Beyond the EVent horizon: battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Res. Soc. Sci. 69, 101581 (2020).
- 68.
Morse, I. A dead battery di
Read Full Article at www.nature.com