Equity, technological innovation and sustainable behaviour in a low-carbon future – Nature.com – DC Initiative on Racial Equity
Skip to content Skip to footer


  1. 1.

    Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    CAS  PubMed  Google Scholar 

  2. 2.

    Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C. & Vandenbergh, M. P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl Acad. Sci. USA 106, 18452–18456 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    A Systemic Approach to the Energy Transition in Europe (SAPEA, 2021); https://www.sapea.info/topics/energy-transition/

  4. 4.

    Global Energy Sector CO2 Emissions Reductions by Current Technology Maturity Category in the Sustainable Development Scenrio relative to the Stated Policies Scenario, 2019–2070, https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-reductions-by-current-technology-maturity-category-in-the-sustainable-development-scenario-relative-to-the-stated-policies-scenario-2019-2070 (International Energy Agency, 2020).

  5. 5.

    Sachs, J. D., Schmidt-Traub, G. & Williams, J. Pathways to zero emissions. Nat. Geosci. 9, 799–801 (2016).

    CAS  Google Scholar 

  6. 6.

    Nelson, S. & Allwood, J. M. Technology or behaviour? Balanced disruption in the race to net zero emissions. Energy Res. Soc. Sci. 78, 102124 (2021).

    Google Scholar 

  7. 7.

    Stephenson, J. et al. Energy cultures and national decarbonisation pathways. Renew. Sustain. Energy Rev. 137 137, 110592 (2021).

    Google Scholar 

  8. 8.

    IPCC. Special Report on Global Warming of 1.5°C. (eds Masson-Delmotteeds, V. et al.) (WMO, 2018).

  9. 9.

    Newell, P. et al. Cambridge sustainability commission report on scaling behaviour change. Rapid Transition Alliance (13 April 2021).

  10. 10.

    Moberg, K. R. et al. Barriers, emotions and motivational levers for lifestyle transformation in Norwegian household decarbonization pathways. Clim. Change 165, 3 (2021).

    CAS  Google Scholar 

  11. 11.

    Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    CAS  Google Scholar 

  12. 12.

    Whitmarsh, L., Capstick, S., Moore, I., Kohler, J. & Le Quere, C. Use of aviation by climate change researchers: structural influences, personal attitudes, and information provision. Glob. Environ. Change 65, 102184 (2020).

    Google Scholar 

  13. 13.

    Dubois, G. et al. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci. 52, 144–158 (2019).

    Google Scholar 

  14. 14.

    Lute, M. L., Attari, S. Z. & Sherman, S. J. Don’t rush to flush. J. Environ. Psychol. 43, 105–111 (2015).

    Google Scholar 

  15. 15.

    Prior, R. An Ohio city has voted to grant Lake Erie the same rights as a person. CNN News, https://edition.cnn.com/2019/02/21/us/ohio-city-lake-erie-rights-trnd/index.html (27 February 2019).

  16. 16.

    Lewis A. et al. 1.5-Degree Lifestyles: Towards A Fair Consumption Space for All (Hot or Cool Institute, 2021).

  17. 17.

    Klinsky, S. & Winkler, H. Building equity in: strategies for integrating equity into modelling for a 1.5 °C world. Philos. Trans. A Math Phys. Eng. Sci. 376, 20160461 (2018).

    PubMed  Google Scholar 

  18. 18.

    Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Lamb, W. F. et al. What are the social outcomes of climate policies? A systematic map and review of the ex-post literature. Environ. Res. Lett. 15, 113006 (2020).

    Google Scholar 

  20. 20.

    Kartha, S., Caney, S., Dubash, N. K. & Muttitt, G. Whose carbon is burnable? Equity considerations in the allocation of a ‘right to extract. Clim. Change 150, 117–129 (2018b).

    CAS  Google Scholar 

  21. 21.

    Rendall, M. Discounting, climate change, and the ecological fallacy. Ethics 129, 441–463 (2019).

    Google Scholar 

  22. 22.

    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  23. 23.

    Creutzig, F. et al. Reviewing the scope and thematic focus of 100,000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation. Environ. Res. Lett. 16, 033001 (2021).

    Google Scholar 

  24. 24.

    Carley, S., Evans, T. P. & Konisky, D. M. Adaptation, culture, and the energy transition in American coal country. Energy Res. Soc. Sci. 37, 133–139 (2018).

    Google Scholar 

  25. 25.

    Asmal, K. Introduction: World Commission on dams report, dams and development. Am. Univ. Int. Law Rev. 16, 1411–1433 (2001).

    Google Scholar 

  26. 26.

    Kawaguchi, D. & Yukutake, N. Estimating the residential land damage of the Fukushima nuclear accident. J. Urban Econ. 99, 148–160 (2017).

    Google Scholar 

  27. 27.

    Sovacool, B. K., Perea, M. A. M., Matamoros, A. V. & Enevoldsen, P. Valuing the externalities of wind energy: assessing the environmental profit and loss of wind turbines in Northern Europe. Wind Energy 19, 1623–1647 (2016).

    Google Scholar 

  28. 28.

    Fairhead, J., Leach, M. & Scoones, I. Green grabbing: a new appropriation of nature? J. Peasant Stud. 39, 237–261 (2012).

    Google Scholar 

  29. 29.

    Druckman, A., Chitnis, M., Sorrell, S. & Jackson, T. Missing carbon reductions? Exploring rebound and backfire effects in UK households. Energy Policy 39, 3572–3581 (2011).

    Google Scholar 

  30. 30.

    Sovacool, B. K. & Griffiths, S. Culture and low-carbon energy transitions. Nat. Sustain. 3, 685–693 (2020).

    Google Scholar 

  31. 31.

    Frankowska, A., Jeswani, H. K. & Azapagic, A. Environmental impacts of vegetables consumption in the UK. Sci. Total Environ. 682, 80–105 (2019).

    CAS  PubMed  Google Scholar 

  32. 32.

    Herforth, A. et al. Cost and Affordability of Healthy Diets across and within Countries: Background Paper for The State of Food Security and Nutrition in the World 2020. FAO Agricultural Development Economics Technical Study No. 9) (FAO, 2020).

  33. 33.

    Axsen, J. & Sovacool, B. K. The roles of users in electric, shared, and automated mobility transitions. Transp. Res. Part D Trans. Environ. 71, 1–21 (2019).

    Google Scholar 

  34. 34.

    Access to Clean Cooking https://www.iea.org/reports/sdg7-data-and-projections/access-to-clean-cooking (International Energy Agency, accessed 2 August 2 2021).

  35. 35.

    Brown, M. A. & B. K. Sovacool. Climate Change and Global Energy Security: Technology and Policy Options (MIT Press, 2011)

  36. 36.

    Bailis, R. et al. Arresting the killer in the kitchen: the promises and pitfalls of commercializing improved cookstoves. World Develop. 37, 1694–1705 (2009).

    Google Scholar 

  37. 37.

    Bailis, R., Drigo, R., Ghilardi, A. & Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5, 266–272 (2015).

    CAS  Google Scholar 

  38. 38.

    Smith, K. R. et al. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu. Rev. Public Health 35, 185–206 (2014).

    PubMed  Google Scholar 

  39. 39.

    Das, K., Pradhan, G. & Nonhebel, S. Human energy and time spent by women using cooking energy systems: a case study of Nepal. Energy 182, 493–501 (2019).

    Google Scholar 

  40. 40.

    Sovacool, B. K. et al. The energy–enterprise–gender nexus: lessons from the Multifunctional Platform (MFP) in Mali. Renew. Energy 50, 115–125 (2013).

    Google Scholar 

  41. 41.

    Osunmuyiwa, O. & Ahlborg, H. Inclusiveness by design? Reviewing sustainable electricity access and entrepreneurship from a gender perspective. Energy Res. Soc. Sci. 53, 145–158 (2019).

    Google Scholar 

  42. 42.

    Johnson, O. W., Gerber, V. & Muhoza, C. Gender, culture and energy transitions in rural Africa. Energy Res. Soc. Sci. 49, 169–179 (2019).

    Google Scholar 

  43. 43.

    Bhattarai, D., Somanathan, E. & Nepal, M. Are renewable energy subsidies in Nepal reaching the poor? Energy Sustain. Develop. 43, 114–122 (2018).

    Google Scholar 

  44. 44.

    Jan, I. & Das Lohano, H. Uptake of energy efficient cookstoves in Pakistan. Renew. Sustain. Energy Rev. 137, 110466 (2021).

    Google Scholar 

  45. 45.

    Khanwilkar, S., Gould, C. F., DeFries, R., Habib, B. & Urpelainen, J. Firewood, forests, and fringe populations: exploring the inequitable socioeconomic dimensions of liquified petroleum gas (LPG) adoption in India. Energy Res. Soc. Sci. 75, 102012 (2021).

    PubMed  Google Scholar 

  46. 46.

    Patnaik, S. & Jha, S. Caste, class and gender in determining access to energy: a critical review of LPG adoption in India. Energy Res. Soc. Sci. 67, 101530 (2020).

    Google Scholar 

  47. 47.

    Khandelwal, M. et al. Why have improved cook-stove initiatives in India failed? World Dev. 92, 13–27 (2017).

    Google Scholar 

  48. 48.

    Otte, P. P. A (new) cultural turn toward solar cooking—evidence from six case studies across India and Burkina Faso. Energy Res. Soc. Sci. 2, 49–58 (2014).

    Google Scholar 

  49. 49.

    Oluwakemi, A., Jewitt, S. & Clifford, M. Culture, tradition, and taboo: understanding the social shaping of fuel choices and cooking practices in Nigeria. Energy Res. Soc. Sci. 40, 14–22 (2018).

    Google Scholar 

  50. 50.

    Coyfe, R. Solar cooker dissemination and cultural variables. Solar Cookers International Network http://solarcooking.org/advocacy/ dissemination_and_culture.htm (2006).

  51. 51.

    Smith, K. R., Gu, S., Kun, H. & Daxiong, Q. One hundred million improved cookstoves in China: how was it done? World Dev. 21, 941–961 (1993).

    Google Scholar 

  52. 52.

    Kishore, V. V. N. & Ramana, P. V. Improved cookstoves in rural India: how improved are they? A critique of the perceived benefits from the National Programme on Improved Chulhas (NPIC). Energy 27, 47–63 (2002).

    Google Scholar 

  53. 53.

    Adler, M. W., Peer, S. & Sinozic, T. Autonomous, connected, electric shared vehicles (ACES) and public finance: an explorative analysis. Transp. Res. Interdiscip. Perspect. 2, 100038 (2019).

    Google Scholar 

  54. 54.

    Graham-Rowe, E. et al. Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: a qualitative analysis of responses and evaluations. Transp. Res. Part A Policy Pract. 46, 140–153 (2012).

  55. 55.

    Seebauer, S. The psychology of rebound effects: explaining energy efficiency rebound behaviours with electric vehicles and building insulation in Austria. Energy Res. Soc. Sci. 46, 311–320 (2018).

    Google Scholar 

  56. 56.

    Sovacool, B. K., Hook, A., Martiskainen, M. & Baker, L. The whole systems energy injustice of four European low-carbon transitions. Glob. Environ. Change 58, 101958 (2019).

    Google Scholar 

  57. 57.

    Langbroek, J. H. M., Franklin, J. P. & Susilo, Y. O. How would you change your travel patterns if you used an electric vehicle? A stated adaptation approach. Travel Behav. Soc. 13, 144–154 (2018).

    Google Scholar 

  58. 58.

    Hamamoto, M. An empirical study on the behavior of hybrid-electric vehicle purchasers. Energy Policy 125, 286–292 (2019).

    Google Scholar 

  59. 59.

    Kester, J. et al. Novel or normal? Electric vehicles and the dialectic transition of Nordic automobility. Energy Res. Soc. Sci. 69, 101642 (2020).

  60. 60.

    Sovacool, B. K. et al. Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions. Clim. Change 155, 581–619 (2019).

    Google Scholar 

  61. 61.

    Henderson, J. M. EVs are not the answer: a mobility justice critique of electric vehicle transitions. Ann. Am. Assoc. Geogr. 110, 1993–2010 (2020).

    Google Scholar 

  62. 62.

    Sovacool, B. K., Kester, J., Noel, L. & de Rubens, G. Z. Energy injustice and Nordic electric mobility: inequality, elitism, and externalities in the electrification of vehicle-to-grid (V2G) transport. Ecol. Econ. 157, 205–217 (2019).

    Google Scholar 

  63. 63.

    Borenstein, S. & Davis, L. W. The distributional effects of U. S. clean energy tax credits. Tax. Policy Econ. 30, 191–234 (2016).

    Google Scholar 

  64. 64.

    Sovacool, B. K., Kester, J., Noel, L. & de Rubens, G. Z. The demographics of decarbonizing transport: the influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Change 52, 86–100 (2018).

    Google Scholar 

  65. 65.

    Sovacool, B. K. The precarious political economy of cobalt: balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. Extr. Ind. Soc. 6, 915–939 (2019).

    Google Scholar 

  66. 66.

    Hornborg, A. & Martinez-Alier, J. Ecologically unequal exchange and ecological debt. J. Polit. Ecol. 23, 328–333 (2016).

    Google Scholar 

  67. 67.

    Skeete, J.-P., Wells, P., Dong, X., Heidrich, O. & Harper, G. Beyond the EVent horizon: battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Res. Soc. Sci. 69, 101581 (2020).

    Google Scholar 

  68. 68.

    Morse, I. A dead battery di

Read Full Article at www.nature.com

Leave a comment

DC Initiative on Racial Equity
📧 dcracialequity@gmail.com

© 2022. All Rights Reserved.